lmcurve2 - Levenberg-Marquardt least-squares fit of a curve (t,y,dy)
#include <lmcurve2.h>
void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
extern const lm_control_struct lm_control_double;
extern const lm_control_struct lm_control_float;
extern const char *lm_infmsg[];
extern const char *lm_shortmsg[];
lmcurve2() wraps the more generic minimization function lmmin2(), for use in curve fitting.
lmcurve2() determines a vector par that minimizes the sum of squared elements of a residue vector r[i] := (y[i] - f(t[i];par)) / dy[i]. Typically, lmcurve2() is used to approximate a data set t,y,dy, where dy represents the standard deviation of empirical data y, by a parametric function f(ti;par). On success, par represents a local minimum, not necessarily a global one; it may depend on its starting value. Users must ensure that all dy[i] are positive.
Function arguments:
Number of free variables. Length of parameter vector par.
Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
Array of length m_dat. Contains the ordinate values that shall be fitted.
Array of length m_dat. Contains the standard deviations of the values y.
A user-supplied parametric function f(ti;par).
Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
A record used to return information about the minimization process: For details, see lmmin2(3).
Fit a data set y(x) with standard deviations dy(x) by a curve f(x;p):
#include "lmcurve2.h"
#include <stdio.h>
/* model function: a parabola */
double f( double t, const double *p )
{
return p[0] + p[1]*t + p[2]*t*t;
}
int main()
{
int n = 3; /* number of parameters in model function f */
double par[3] = { 100, 0, -10 }; /* really bad starting value */
double parerr[3];
double covar[3*3];
/* data points: a slightly distorted standard parabola */
int m = 9;
int i;
double t[9] = { -4., -3., -2., -1., 0., 1., 2., 3., 4. };
double y[9] = { 16.6, 9.9, 4.4, 1.1, 0., 1.1, 4.2, 9.3, 16.4 };
double dy[9] = { 4, 3, 2, 1, 2, 3, 4, 5, 6 };
lm_control_struct control = lm_control_double;
lm_status_struct status;
control.verbosity = 1;
printf( "Fitting ...\n" );
/* now the call to lmfit */
lmcurve2( n, par, parerr, covar, m, t, y, dy, f, &control, &status );
printf( "Results:\n" );
printf( "status after %d function evaluations:\n %s\n",
status.nfev, lm_infmsg[status.outcome] );
printf("obtained parameters:\n");
for ( i = 0; i < n; ++i)
printf(" par[%i] = %12g uncertainty = %12g\n", i, par[i], parerr[i]);
printf("obtained norm:\n %12g\n", status.fnorm );
printf("fitting data as follows:\n");
for ( i = 0; i < m; ++i)
printf(
" t[%1d]=%2g y=%5.1f+-%4.1f fit=%8.5f residue=%8.4f weighed=%8.4f\n",
i, t[i], y[i], dy[i], f(t[i],par), y[i] - f(t[i],par),
(y[i] - f(t[i],par))/dy[i] );
return 0;
}
Copyright (C) 2009-2015 Joachim Wuttke, Forschungszentrum Juelich GmbH
Software: FreeBSD License
Documentation: Creative Commons Attribution Share Alike
Homepage: https://jugit.fz-juelich.de/mlz/lmfit
Please send bug reports and suggestions to the author <j.wuttke@fz-juelich.de>.